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Tensile strength of hybrid composites 

CARL ZWEBEN 
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This paper presents an approximate, statistical analysis for the tensile strength of 
unidirectional hybrid composite materials consisting of two-dimensional arrays of 
alternating low elongation and high elongation fibres in a common matrix. Expressions 
for ineffective length and fibre strain concentration factor in hybrid composites are 
developed. The analysis identifies a number of important material properties that affect 
the failure process in hybrids: statistical fibre tensile failure strain characteristics, and 
fibre extensional moduli and cross-sectional areas. The influence of these parameters on the 
failure processis examined and differences between failure mechanisms in hybrids and 
composites containing only one type of fibre are considered. The analysis predicts that, in 
general, the failure strain of a hybrid should be different from those of composites 
reinforced with either of the "parent" fibres alone. It is found that the theory can explain 
the "hybrid effect" that has been observed by several authors: hybrids made by 
combining high elongation and low elongation fibres, such as graphite and glass, often 
display tensile failure strains greater than those of composites made from the low 
elongation fibres alone. Predicted failure strains are compared with available experimental 
data. Suggestions for future work in the area are presented. 

1. In t roduc t ion  
There is increasing interest in hybrid composites - 
materials made by combining two or more different 
types of fibres in a common matrix - because these 
materials offer a range of properties that cannot be 
obtained with a single kind of  reinforcement. At 
the same time, material costs can be substantially 
reduced by a careful selection of reinforcing fibres. 

Fibres such as graphite and boron have low 
ultimate strains and make fairly brittle composites. 
It has been shown [1-5] that by combining these 
fibres with glass or "Kevlar" 49 aramid fibres, that 
have higher failure strains, it is possible to improve 
impact resistance. Zweben [6] has shown that a 
[0/90] hybrid laminate made from unidirectional 
graphite tape and "Kevlar" 49 fabric also had 
greater "fracture toughness" than an all-graphite 
panel. The advantages of  hybrids in a variety of 
structural applications have been discussed [6-  
13], and mechanical properties presented [6, 
14-16].  

In order to confidently use a material, we need 
to understand how it behaves under load. Con- 
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versely, we are reluctant to use materials whose 
behaviour we do not understand. Phillips has 
summarized some of the major concerns surround- 
ing the behaviour of hybrid composites [17]. The 
most puzzling seems to be in the area of tensile 
failure. Specifically, Phillips mentions that under 
tensile loading, the straight-line portion of some 
graphite-glass hybrids extends beyond the failure 
strain level of all.graphite composites. He credits 
the first observation of this phenomenon (the 
"hybrid effect") to Hayashi [18]. 

Bunsell and Harris [19] observed the "hybrid 
effect" in their tests on unidirectional laminates 
made from separate layers of high modulus graphite 
and glass fibres. The effect was attributed to re- 
sidual compressive thermal strains in the graphite. 
They reported that the residual compressive strain 
in a single graphite/epoxy layer sandwiched be- 
tween two layers of glass/epoxy was 0.00029, 
about 10% of the graphite/epoxy tensile failure 
strain of 0.0026. However, the mean strain at first 
break in hybrid specimens with layers bonded 
together was 0.0048, which is 0.0022 greater than 
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TABLE I Tensile failure strains of "Thornel" 300 
"Kevlar" 49 and hybrid unidirectional composites 

Reinforcement Tensile failure strain Ratio of mean 
strain to that Mean Coefficient of 

(%) variation (%) of graphite 
composite 

"Thornel" 300 1.04 6.6 1.00 
graphite 
50 % "Thornel" 1.08 5.9 1.04 
300/ 
50% "Kevlar" 49 
"Kevlar" 49 1.80 6.0 1.63 

the graphite/epoxy failure strain. Only about 
0.0003 of the increment is explained by residual 
thermal stresses. This leaves 0.0019 unaccounted 
for. That is, the hybrid tensile strain at first break 
is 80% greater than that of the high modulus 
graphite/epoxy alone, and only 10% of the increase 
can be explained by residual thermal stresses, 
according to the authors' data. Assuming these 
results to be valid, it appears we must took further 
for an explanation of the "hybrid effect". 

We have observed this phenomenon in our own 
work with hybrids made by combining "Kevtar" 
49 aramid and "Thomel" 300 graphite fibres in a 
Fiberite 934 epoxy matrix. Table I shows ultimate 
tensile strains for unidirectional hybrid specimens 
made from prepreg tapes which are made with 
alternating yarns of "Thornel" 300 graphites and 
"Kevlar" 49 aramid fibres. Since both yarns have 
very similar cross-sectional areas, the volumetric 
ratio of graphite.to-aramid is close to 50 : 50 [6]. 
We note that the hybrid failure strain is about 4% 
greater than that of the graphite Control. We did 
not observe any departure from lineafity before 
failure in these tests. That is, failure was cata- 
strophic with no apparent pre.cracking in the 
graphite. 

We also investigated the behaviour of composites 
reinforced with balanced hybrid fabrics [16]. By 
balanced, we mean that warp (longitudinal) and 
fill (transverse) constructions are similar. A com- 
posite made from balanced fabrics with all layers 
oriented in the same direction is analogous to a 
[0/90] laminate. Thy hybrid fabric was made by 
alternating yarns of "Kevlar" 49 and "Thornel" 
300 in both warp and fill directions. As in the 
unidirectional composites, the ratio of graphite-to- 
"Kevlar" 49 was about 50 :50 .  Table II snows 
tensile failure strains of the hybrid composites 
along with those of controls reinforced with 
graphite and aramid fabrics of identical construc- 

TABLE II Tensile failure strains of "Thornel" 300, 
"Kevlar" 49 and hybrid balanced fabric composites 

Reinforcement Tensile failure Ratio to 
strain (%) Graphite strain 

"Thornel" 300 0.71 1.00 
50%"Thomel" 300/ 0.94 1.32 
50% "Kevlar" 49 
"Kevlar" 49 1.68 2.36 

tion. We note that the hybrid ultimate strain is 
substantially greater (32%) than that of the graphite 
control. As in the case of unidirectional com- 
posites, failure was catastrophic with no discernible 
pre-cracking of the graphite. 

Our data indicate that the axial coefficient of 
thermal expansion of a typical unidirectional 
"Kevlar'" 49/epoxy composite from 0 to 212 ~ F is 
about--2 x 10 .6 in. in-1 OF-1. According to Hofer 
etal. [20], the corresponding value for a "Thomet"  
300 composite is 0.01 x 10 -6 in.inY 1 ~ -~ from 50 
to 350 ~ F. These values indicate that upon cooling, 
"Kevtar" 49 composites expand axially a small 
amount, and "Thomel" 300 composites undergo 
an almost negligible contraction. This means that 
the residual thermal strain introduced during 
sPecimen curing is positive (tensile) in the graphite. 
Therefore, it does not seem likely that the greater 
tensile failure strain can be accounted for by 
residual thermal strains. In fact, we would expect 
hybrid s to have lower ultimate strains based on 
this effect alone. In any event, there would have to 
be a very large difference in coefficient of ex- 
pansion between aramid and graphite fibres to 
explain, solely in terms of residual thermal strains, 
the 32% increase in failure strain observed in the 
case of hybrid fabric composites. 

The hybrid effect is also evident in the data for 
"Kevlar" 49 combined with several graphite fibres 
presented in [15]. 

As we have seen, the "hybrid effect" has been 
observed independently by several investigators 
using different types of fibres and reinforcement 
configurations (collimated fibres and fabrics). 
Therefore, it is probably a real effect, and not a 
testing artifact. Furthermore, although data are 
not extensive, we tentatively conclude that residual 
thermal strains alone do not explain the effect. 
Therefore, if residual thermal strain is not the 
canse,the question as to what is, remains unsolved. 

Perhaps the problem lies in the way we look at 
composite strength. We tend to think in terms of a 
unique, deterministic quantity, because of our ex- 
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Figure 1 Variation with gauge length of 900 '  
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perience with metals. In fact, failure of composites 
under tensile load is a complex, statistical process 
involving fibre strength characteristics and matrix 
and interfacial properties [21-25] .  If we look at 
tensile strength in this light, it is not surprising 
that hybrid composites have failure strains that 
differ from those of composites made from their 
"parent" fibres. Because hybrid composites are 
made from two or more different types of fibre 
which generally have very different mechanical 
properties, we can expect that failure processes in 
hybrids will differ from those of composites made 
with one type of fibre only. Therefore, it is reason- 
able to anticipate that their failure strains will 
differ. 

2. Fibre strength properties 
Before we begin the analysis, let us consider the 
strength characteristics of the major types of fibres 
used in composite materials. We emphasize that 
the strengths of these fibres are statistical in nature, 
and not  deterministic. In general, fibre strength 
displays significant scatter at a fixed gauge length. 
Coefficients of variation (CV = standard deviation 
divided by mean) are typically 10 to 20%, and can 

Figure 2 Variation with gauge length of the 
mean tensile strength of boron fibres (after 
Herring [28] ). 
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be higher. In contrast, high-strength improved 
plow steel wire has a CV of 0.5 to 1%, or less. In 
addition to the scatter at fixed gauge lengths, we 
find that mean fibre strength depends on the gauge 
lengths at which they are tested. Mean strength de- 
creases as gauge length increases. Therefore, it is 
incorrect to speak of "the" strength of a particular 
fibre. Fibres do not have a unique, deterministic 
strength. At best, we are only justified in referring 
to mean strength at a specified gauge length. These 
points about tensile strength also apply to fibre 
failure strain, which displays both scatter and gauge 
length dependence. Let us consider representative 
examples of the major renforcing fibres: E-glass, S- 
glass, boron, graphite, "Kevlar" 49 aramid. 

Metcalfe and Schmitz [26] found that both E- 

glass and S-glass display significant scatter and 
length-strength dependence. Fig. 1 shows how the 
mean strengths of commercial E-glass and S-glass 
fibres vary with gauge length based on their data. 
Kies [27] also found a length-strength dependence 
in his tests on E-glass. He reported filament strength 
CVs of 24 and 28% at gauge lengths of 10 and 30 
cm, respectively, indicating substantial scatter. The 
breaking strengths of one set of seventy-five 10 cm 
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Figure 3 Variation with gauge length of the mean tensile 
strength of high modulus graphite fibres (after Diefendorf 
and Tokarsky [38] ). 

E-glass specimens ranged from a low of about 60 x 
103 psi to ahigh of 300 x l0 s psi. 

If  we assume that there is relatively little fibre- 
to-fibre variation in Young's modulus, which is 
probably valid for E-glass, and using a value of 
10.5 x 106 psi for this quantity, we compute from 
the data in Fig. 1 that the tensile failure strain de- 
creases from about 3.2% at a 1 cm gauge length to 
2.2% at 10cm. That is, glass fibres do not have a 
unique ultimate tensile strain. As in the case of  
tensile strength, it depends on gauge length. 

Fig. 2 shows the scatter bands and mean 
strengths of  boron filaments at four gauge lengths, 
as determined by Herring [28]. As in the case of 
E-glass and S-glass, there is no unique strength, or, 
by inference, ultimate strain. 

Diefendorf and Tokarsky presented tensile 
strenghts data for high-modulus graphite fibres at 
various gauge lengths [38]. In  Fig. 3 we have hand- 
fitted a straight line to their data. Again, we find a 
downward slope to the curve. 

900  
800 
700 

z 600 
b.I 

500 

~ 4 0 0  
I - -  0 .  

-' 200 

l O O  1 

i , , i r -  T ~ - - ] - -  

K E V L A R @  4 9  ARAMID 

sTRENGTH 

i l i I i i i i I i i i i i i i 
1 0  

GAUGE LENGTH (in.) 

1328 

Fig. 4 shows how mean tensile strength and fail- 
ure strain of "Kevlar" 49 filaments vary with 
gauge length. Within experimental error, the curves 
are parallel, and clearly show that both quantities 
depend on specimen length. 

In the next section, we examine how the pres- 
ence in a composite of two types of fibres with 
different moduli, cross-sectional areas, and failure 
strain characteristics affect the failure process in a 
hybrid composite. 

3. Analysis 
Our primary objective is to provide some insight 
into the mechanisms of failure in a material rein- 
forced with two types of fibres that have different 
stiffness and strain characteristics. To do this, we 
construct idealized models that, hopefully, incor- 
porate the major phenomena involved. The validity 
of the assumptions is open to challenge, but, in the 
long run, it is only by comparing the predicted re- 
suits with experimental data that the usefulness of 
the analysis can be judged. 

For simplicity we consider a hybrid composite 
of axiallength L made from a single layer of fibres, 
as shown in Fig. 5. High modulus fibres with re- 
latively low tensile strains are alternated with 
lower modulus fibres that have higher strains to 
break. The low elongation fibres are denoted by 
LE and subscript 1 and the high elongation fibres 
by HE and subscript 2. The respective moduli and 
cross-sectional areas of the fibres are denoted by 
El,  A ~ and E2, A2. The total number of fibres in 
the composite is N, of which N/2 are LE, and N/2 
are HE fibres. 

In practice, hybrids are generally made by com- 
bining yams  of different types of fibres, rather 
than single filaments as we have assumed in our 
model. In order to handle this case, we assume 
that we can treat each impregnated yarn as if it 
were an individual fibre. The effective fibre area is 
equal to the total cross-sectional area of the fila- 
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Figure 4 Variation with gauge length of the 
mean tensile strength and failure strain of 
"Kevlar" 49 aramid fibre. 
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Figure 5 Model for tensile strength analysis of hybrid 
composites. 

ments in the yarn. In this case, instead of using the 
statistical strength characteristics of the individual 
filaments, we use those of the impregnated strand. 
We argue that impregnated yarns are essentially 
small composites and fail by fibre break propa- 
gation, as described in [21,22].  Fibre break propa- 
gation in the LE fibres will be arrested when the 
crack reaches the HE fibres. This is undoubtedly a 
major assumption. However, consideration of the 
failure processes in the individual yarns would in- 
crease the complexity of the analysis considerably, 
and as a first approximation, we believe the simpli- 
fication is justified. In the remainder of the report 
we will use the term fibres, with the understanding 
that it represents both fibres and yarns. 

Our analysis from this point on follows the pro- 
cedures developed in [22]. We assume that the 
fibres support all of the applied load. As the com- 
posite is loaded, fibres break randomly throughout 
the material. Because the LE fibres have signifi- 
cantly lower ultimate strains, at a given load we 
expect to find many more breaks in these fibres 
than in the HE fibres. Because of this, we will focus 
our attention on what happens in the vicinity of  
random breaks in the LE fibres. 

Since we are dealing with fibres of different 
moduli and cross-sectional areas, it is more con- 
venient to consider composite strain as the inde- 
pendent variable, rather than stress which was used 
in [22]. 

When an LE fibre breaks at a strain level e, the 
two HE fibres adjacent to it are subjected to a 
strain concentration of intensity kbe, where kb is 
the strain concentration factor for the hybrid ma- 
terial associated with a single broken LE fibre. The 
quantity k h is analogous to the load concentration 
factor for a single broken fibre defined as kl in 
[31 ].  Since, in our simple model, axial fibre stress 
depends only on axial strain, kh is also a fibre 
stress concentration factor for the hybrid. That is, 
the stress in the HE fibre next to a broken LE 
fibre increases from E2e to khE2e due to the 
break. Note that the strain concentration factor 
associated with the increase in strain in a LE fibre 
due to fracture of an HE fibre is generally different 
from kh. This is discussed later. 

It was shown [21] that the stress (and strain) 
perturbation arising from a fibre break is localized. 
The axial distance over which the stress is perturbed 
was defined in that work as the ineffective length, 
because the broken fibre is ineffective in carrying 
load over this portion of its length. In the present 
case, we denote the ineffective length associated 
with a broken LE fibre in the hybrid by 5u. 

We now consider the hybrid to be composed of 
a series of layers whose axial dimension is 6h (Fig. 
5). The number of layers is Mh =L/6n. This is 
essentially the geometric model of Rosen [21] 
which, in turn, was an adaptation to composites of 
a general material strength model proposed by 
Gticer and Gurland [29]. 

The strain concentration in the HE fibres in the 
vicinity of broken LE fibres increases the prob- 
ability that one or more of them will break in 
these regions. Therefore, every scattered break in 
an LE fibre can be thought of as a nucleus for 
fibre break propagation. As the strain in the com- 
posite is increased, the number of scattered LE 
fibre breaks increase, as does the strain level in the 
overstressed regions of HE fibres adjacent to LE 
fibre breaks. Eventually, the HE fibres will start to 
break at the points of  strain concentration. 

Following the approach used in [25], we hy- 
pothesize that the strain level at which the first 
overstressed fibre is expected to break is a lower 
bound on the ultimate strain of the hyrbid compo- 
site. That is, we postulate that failure results from 
the propagation of fibre breaks caused by localized 
strain concentrations. Therefore, the strain at 
which the first overstressed HE fibre is expected to 
break represents a lower bound on the strain associ- 
ated with this mode of failure. 
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We now assume that the cumulative distribution 
functions for the failure strains of  the LE and HE 
fibres of  length l are given, respectively, by Weibutl 
distributions of the form 

F l ( e )  = 1 - -exp  ( - - p l e  q) 
(1)  

F2(e )  = 1 - -exp  (-- rle s) 

where p, q and r, s are Weibull parameters of  the 
respective distributions. We note that the Weibult 
distribution explicitly includes fibre length. This is 
one of its major features. 

The derivation of the expression for e2h the 
composite strain at which the fracture of the first 
overstressed HE fibre in the hybrid is expected, is 
given in Appendix 1. We present the final result 
here. 

e2h = [NLprah(k~a --  1)] -v(q+s) (2) 

For a composite reinforced with N fibres, all of 
which are of the same material, say the LE fibres, 
the equivalent expression is 

e2 = [2NLp28(k  q - -  1)1 -~/=q (3) 

where k and 8 are the strain concentration factor 
and ineffective length for the LE fibre composite, 
respectively. Note that k is identical to the load 
concentration factor k~ used in [22]. The factor 2 
appears in Equation 3 but not in Equation 2 be- 
cause there are half as many LE fibres in the hybrid 
as there are in the all-LE fibre specimen. 

We have obtained the above closed form sol- 
utions for e2h and e2 by expanding exponentials in 
Taylor series and keeping first terms only. These 
expressions replace the transcedental equation for 
the lower bound, Equation 4, in [22]*. By ex- 
panding that equation, we can obtain a closed 
form solution for the stress, 0"2, at which the first 
multiple break in a composite is expected. As- 
suming that the fibre tensile strength distribution 
is of  the form/7(o) = 1 -- exp (--oda#), we obtain 
the following closed form expression for the lower 
bound on the tensile strength of a composite in 
which fibres are in a square array 

0"2 = [4NLSa2(k f s  - -  1)]- 1/:# 
(4) 

= oh [4NLS(k~is - -  1)] -1/:fl 

where ~1 = e ~-I/#, and k ls  is the fibre stress con- 
centration factor associated with a single broken 
fibre in a square array. 

* E q u a t i o n  4 in  [22]  s h o u l d  read:  M N F ( e ) p f f  ~ = 1. 
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For a two-dimensional (planar) array, as in the 
case of  the material under study in this paper, the 
lower bound is given by 

0"2 = 1~1 [ 2 N L ~ ( k ~  - -  1)] -1/2/3. ( 5 )  

We are now in a position to write an expression 
for Re ,  the ratio of the lower bounds on failure 
strain of  a hybrid to that of  a composite of the 
same length that contains only LE fibres: 

R e  = e 2 h / e 2  

= [prLfh(k~a --  1)1-1/(q+s) (6) 
[2p2LS(k  q -- 1)]-1/2q - 

We see that the ratio of failure strains depends 
on: LE and HE fibre tensile failure strain Weibull 
distribution parameters p, q and r, s; specimen 
length; ineffective lengths 6 and 6h; strain concen- 
tration factors k and kh. Approximate expressions 
for ineffective lengths and strain concentration 
factors are derived by use of another approximate 
model based on the approach of [30]. Appendix 2 
presents the details of the analysis: only the final 
expressions are given here. 

/ ~1/2 
. 5 ~ . I E t A t d ~  

- -  ' " (7) 
k ~ J  

2 [ E 1 A I d ]  1/2 m ~ - - m ~  

m l  (2 -- m ~ )  -- m2(2  --  m~)  

(8) 
k = 1.293 (9) 

kh = 1 -~ m2 - - m t  (10) 
m l (2 -- ml z) -- m2(2 -- rn~) 

where E1A1 is the extensional stiffness of LE 
fibres, E ~ A z  the extensional stiffness of HE fibres, 
G the matrix shear modulus, h the matrix thick- 
ness, d the fibre spacing (Fig. 6), o = E 1 A 1 /  
(E2A : )  = ratio of  fibre extensional stiffnesses, and 

(p-b l +-(p2 +1)1/2) 1/2. 
m l , 2  = , P 

We note that 8 and k can be derived from the 
general expression for 6h and kh, respectively, by 
setting P = 1. The value of  k given by the approxi- 
mate model, 1.293, is quite dose to that obtained 
with a different modal by Hedgepeth, 1.333 [31]. 

We observe that the expressions for 8h and kh 
can be greater or less than the corresponding 
values for a LE fibre composite, depending on 
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Figure 6 Model for determination of hybrid ineffective 
length, 8h, and strain concentration factor, kh. 

whether the ratio of  fibre extensional stiffness, P, 
is greater or less than one. Since p is independent 
of fibre strength properties, we see that, at least in 
principle, it is possible to construct hybrids with 
lower bounds on failure strain that are lower or 
higher than that of an LE fibre composite. 

When the HE and LE fibres display a similar 
amount of scatter, the expression for the ratio of 
lower bound strains, Equation 6 can be greatly 
simplified. Let us assume that both fibres have the 
same tensile failure strain coefficient of variation, 
6, which is defined as standard deivation divided 
by mean. (We note that coefficient of variation is 
independent of gauge length for the Weibull distri- 
bution). It can be shown that for this case, q = s 
and Equation 6 reduces to 

(p)-(l/ZqI sla(kqh --1)] -'/2q 
Re = 26(kq---7) ] . (11) 

We now observe that gl(l) and g2(/), the mean 
strains of LE and HE fibres tested at a gauge 
length l, given by 

= (p/)-*mp (1 gl(/) 

e2(/) = (r/)-lml TM (1 

where P is the gamma function. 

+ 1 )  (12) 

+1) 
Since q = s, Equation 11 can be rewritten as 

I gB]l/2 6h(k~ -- l )]- l/2q 
L~l]  26(k q 1)J , (13) 

i.e. for the special case in which LE and HE fibres 
have the same coefficient of variation, the ratio of 
hybrid lower bound strains to that of LE com- 
posites is directly proportional to the square root 
of the ratio of fibre strains at an arbitrary gauge 
length, I, multiplied by a function of ineffective 
lengths, stress concentration factors and the 
WeibuU parameter q, which is inversely related to 
fibre coefficient of variation. 

When the fibre coefficient of variation is small, 
say about 5%, or less (which corresponds to/3 > 
25), and kh ~> k, we can introduce another simplifi- 
cation that makes it easier to assess the importance 
of the several parameters. For this case, k q - -  1 
k q and kn q -- 1 = k q , and Equation 13 reduces to 

(~2] a/2 :k'1/2{6~ t/2q 
Re = 21/2q\gl] (~:) \~--~ . (14) 

Equation 14 shows that the ratio of lower 
bound strains depends strongly on the mean fibre 
tensile failure strains and strain concentration fac- 
tors, while the influence of ineffective length is re- 
latively small, since q is quite large. The limitations 
on Equation 14 should be kept in mind. We have 
assumed that LE and HE fibres have the same 
failure strain coefficient of variation, and this is 
less than about 5%. 

In the next section, we compute ratio of lower 
bounds on failure strains and compare these with 
experimental data. 

4. Comparison with experimental data 
We consider two cases: "Kevlar 49/"Thornel" 300 
[6] and a high modulus graphite/E-glass system 
[191. 

As discussed in Section 1, the "kevlar" 49/ 
"Thornel" 300 hybrids were made by alternating 
yarns of the two materials and not individual fila- 
ments. Therefore, we assume that we can treat the 
individual impregnated yarns as if they were fibres. 
Unfortunately, we do not have strength and failure 
strain data for impregnated yarns of the two ma- 
terials, but we do have data for unidirectional 
composite tensile coupons. We assume that these 
values are close enough to those of impregnated 
yarns to use for the present study. This is equiv- 
alent to assuming that the effect of specimen 
volume is small. Table I presents tensile coupon 
data. We note that the coefficients of variation for 

1331 



"Kevlar" 49 and "Thornel" 300 composites are 
similar and relatively small, so that we are justified 
in using the sDnplified expression for Re presented 
in Equation 14. Using Equation 10 we find that 
kh = 1.462 which is only about 13% greater than 
the corresponding value for an LE composite of 
1.293. The ratio of hybrid ineffective length-to-LE 
ineffective length is found to be 1.573 : t .53t = 
1.03 by use of Equations 9 and 10. We assume 
that both the fibres have a fibre strain coefficient 
of variation of about 6% which approximately 
corresponds to a value of 20 for the WeibulI par- 
ameter q. Substituting these values in Equation 14, 
we find that 

R e = (1.0t 7X1.279)(0.940)(0.999) = 1.22, 

where the four members in parentheses correspond 
to the four terms on the right-hand side of the 
original equation. By examining the contributions 
of these four quantities, we gain some insight into 
the effects of the major parameters we have in- 
cluded in our analysis. The first term arises because 
there are twice as many LE fibres in an all-LE fibre 
composite as there are in the hybrid. Since the LE 
fibres represent sources of defects that can cause 
fibre break propagation, the analysis predicts that 
strength decreases with increasing number of fibres. 
This is essentially a volume effect. The second 
term, which is the dominant one, reflects the pre- 
dicted increase in strain related to the ratio of 
mean fibre strains. Note that it is a square root de- 
pendence. The higher fibre strain concentration 
factor for hybrids causes the third term to be less 
than unity. Although the ineffective length of the 
hybrid is greater than that of the all-LE fibre com- 
posite, its effect on strength is extremely small, 
since the ratio of ineffective lengths appears to the 
1/2q power. 

The experimental ratios of hybrid-to-graphite 
strains were found to be 1.04 for unidirectional 
composites and 1.31 for balanced fabrics. The pre- 
dicted value falls just about in the middle of these 
two values. 

Bunsell and Harris tested composites consisting 
of one or two layers of high modulus graphite/ 
epoxy sandwiched between two layers of E-glass/ 
epoxy. Failure strains for the parent materials 
were found to be 0.0026 and 0.0175, respectively. 
The respective graphite and glass composite moduli 
were 142 and 41 GNm -2. No data were given on 
coefficients of  variation. We assume they were the 
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same as we found for "Kevlar" 49 and "Thornel" 
300, about 6%. 

Although the specimen geometry of these 
layered hybrids is different from the array of  single 
fibres we analysed, it is instructive to see what 
type of behaviour the model predicts for these ma- 
terials. Using the equations as discussed above, we 
find that kh = 1.753, and the ratio of ineffective 
lengths 811/8 = 1.627/1.531 = 1.06. Substituting 
in Equation 14 with q = 20, we find that 

Re = (1.017)(2.59)(0.859X0.998) = 2.26. 

Experimental strain ratios were 1.31 for the case 
of two layers of  graphite in the middle and 1.83 
for the case of one layer in the middle. Although 
the predicted ratio is greater than either value, it is 
perhaps significant that both experimental ratios 
are rather large. We observe further that the exper- 
imental value for the three-layer material, which 
more closely fits the assumed model, in which LE 
and HE fibres alternate, is the greater one. 

5. Conclusion 
In this paper we have attempted to gain some in- 
sight into the behaviour under tensile loading of 
hybrid composites reinforced with alternating low- 
elongation and high-elongation fibres which have 
different tensile failure strain characteristics. To 
do this we have constructed two simple, highly 
idealized models: one to study statistical failure 
mechanisms, and the other to obtain hybrid strain 
concentration factors and ineffective lengths. The 
analysis predicts than for some systems, the lower 
bound strain on fibre break propagation is higher 
for hybrids that it is for LE fibre composites. Con- 
sidering the many simplifying assumptions made in 
developing the analysis, agreement with experimen- 
tal data is not unreasonable. 

In essence, the analysis predicts that the intro- 
duction of HE fibres in an L E  fibre composite 
raises the strain level required to propagate fibre 
breaks because the HE fibres behave like crack 
arrestors on a micromechanical level. The use of 
high-elongation materials to arrest propagating 
cracks in a composite on a macroscopic level has 
been studied by Eisenman and Kaminski [32], 
among others, and has been shown to be effective 
for some configurations. 

This analysis presented here is a very simplified 
approach to a complex problem. Undoubtedly, 
more sophisiticated models could contribute more 
to our understanding of the processes involved. 



For example, the approach developed by Phoenix 
[33] provides a strength distribution function for 
composites associated with an assumed failure 
mechanism, rather than the simple lower bound 
expression developed here. In addition, the many 
simplifying assumptions made in our development 
need to be considered in greater detail. 

There may well be other approaches that can 
explain the hybrid effect. For example, Kelly has 
suggested that it might be worthwhile to consider 
the problem on an energy basis [34]. This approach 
was found [35, 36] to provide an explanation for 
the higher matrix fracture strains of brittle matrix 
composites. 

We believe that hybrid composites will assume 
increasing importance in the coming years. It is 
important that we understand how they behave to 
provide for their intelligent and reliable appli- 
cation. 

Appendix 1. Lower bound on composite 
failure strain 

In this section, we develop expressions for the 
lower bounds on composite strain associated with 
the fibre break propagation mode of failure for 
hybrid and low elongation fibre composites. We 
use the approach previously developed [22, 25]. 

Consider a composite consisting of a planar 
(two-dimensional) array of alternating HE and LE 
fibres, as shown in Fig. 5. We assume that fibres 
carry only axial load, and the strain in a given fibre 
is constant across the thickness of that fibre at any 
cross-section. Because we are primarily concerned 
with resin-matrix composites, the axial load sup- 
ported by the matrix is small compared to that of 
the fibres, and is neglected. 

We assume that the tensile failure strain distri- 
butions of the LE and HE fibres are given, re- 
spectively, by Weibull distributions of the form 

F1 (e) = 1 -- exp ( -  ple a) 
(A1) 

F2 (e) = t -- exp (-- rte s) 

where I is fibre length and p and q, and r and s are 
Weibull parameters of the respective distributions. 
Where yarns are used, we treat them as if they 
were individual fibres, and use the impregnated 
yarn failure strain properties to define Fl (e)  and 
F2(e). 

We assume that the properties of the failure 
strain distributions are such that under the range of  
applied strains of  interest, the number of  scattered 

HE fibre breaks are small compared to the number 
of LE fibre breaks, and we ignore the former. Let 
the total number of fibres in the composite be N, 
equally divided between LE and HE fibres. We 
assume that the composite, whose length is L, is 
loaded in axial tension. Away from the boundary 
region near the loaded ends of the composite, the 
axial strain in the HE and LE fibres is equal and is 
the uniform composite strain, e, except in the 
vicinity of fibre breaks. Near a broken LE fibre, 
the stress in both the broken and surrounding fibres 
is perturbed over an axial distance, fix, the ineffec- 
tive length in the hybrid associated with the 
fracture of an LE fibre. An expression for 6h is de- 
rived in Appendix 2. We note that the ineffective 
length arising from an HE fibre break in the hybrid 
is generally different from 8h. Following the ap- 
proach of Rosen [21], we assume that the com- 
posite is composed of Mh layers whose axial length 
is 8h, where Mb = L/6h. The stress concentration 
arising from a broken fibre is assumed to affect 
only the two adjacent fibres in the same layer. 

When the composite is subjected to a strain e, 
the expected number, Xlh, of scattered fibre 
breaks in the N/2 LE fibres is 

Xlh = �89 (A2) 

where 6h is the appropriate fibre length to use in 
F1 (e). 

Next to each LE fibre, there are two HE fibres 
subjected to a strain concentration k~e, where k• 
is the strain concentration factor associated with 
an LE fibre break in the hybrid. An expression for 
kb is developed in Appendix 2. As in the case of 
ineffective length, the strain concentration factor 
associated with an LE fibre break in the hybrid is 
different from that of an HE fibre break. We 
assume that the strain concentration is constant in 
the two adjacent fibres throughout the entire 
length of the layer in which the break occurs. 

We note that in our model, kh is als0 a stress 
concentration factor. It describes the increase in 
stress in an overstressed HE fibre relative to the 
stress in undisturbed HE fibres, which is E2e, 
where E2 is the Youngs, modulus of the HE fibres. 
That is, the stress increases from E2e to khE2e. 

Now consider what happens to an HE fibre that 
is initially at a strain level e, and is suddenly sub- 
jected to a strain khe. The probability that it ~dtl 
fail due to the strain increment (kh -- 1)e, assuming 
it has not failed at the strain level, e, is 
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G (/% e) - & (e) 
Ph = (A3) 

1 -- F2 (e) 

The appropriate fibre length for use with Equation 
A3 is 8h,  the hybrid ineffective length 

The probability that at least one of the two 
overstressed fibres will break is 

P2h = 1 - ( 1 - - e h )  2. (A4) 

The expected number of sites where a scattered 
LE fibre break is followed by the fracture of at 
least one of the adjacent overstressed fibres is 

X2h = XmP2h.  (A5) 

As in [25], we propose that the fracture of one 
of the overstressed fibres is a lower bound on the 
stress at which fibre breaks will propagate, causing 
composite failure. The mathematical expression 
for this event it 

X2h(e2h) = 1, (A6) 

where e2h is the composite strain, associated with 
the fracture of the first overstressed HE fibre. 
Again, this is the proposed lower bound on hybrid 
failure associated with the fibre break propagation 
failure mode. 

By making some simplifying assumptions, we can 
obtain a closed form solution for e2h. Composite 
failure occurs when the magnitude of the cumulat- 
ive distribution functions is very small compared 
to unity. Therefore, we neglect F 2 ( e ) w i t h  respect 
to unity in the denominator of Equation A3. We 
also neglect products and squares of distribution 
functions in Equation A4. Based on these assump- 
tions, Equation A6 reduces to 

X2h = MhNF1 ( e~)  [F2 (khe2h) -- F2 (e~)] = 1. 
(A7) 

We now assume that the exponentials in 
Equation A1 can be adequately represented by the 
first term of their Taylor series expansions. That is 

exp (-- pie  q) ~-- 1 - -  p le  q 
(AS) 

exp (-- d e  s) ~- 1 - -  rle s. 

Substituting these values in Equation A1 we 
obtain 

Fx (e) ~ p le  q 
(g9)  

F2 (e)  ~- rle ~. 

Making use of Equation A9 in conjunction with 
Equation A7 we arrive at the simplified, dosed- 
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form expression for the lower bound strain, 

e2h = [NL6hpr(k~  - 1)] -a/(q+s) (A10) 

Here, we have also made use of the relation Mh = 
z,/~h. 

The equivalent expression for a composite of 
length L containing IN low-elongation fibres is 

e2 = [ 2 N L 6 p : ( k  q - -  1)]-l/2q. ( A l l )  

This expression is derived in the same way as 
Equation A10. The factor of 2 in the brackets 
arises in Equation A l l  because there are twice as 
many LE fibres in this composite as there are in 
the hybrid. Here, 5 and k are, respectively, the in- 
effective length and strain concentration factor for 
composites having only LE fibres. Expressions for 
these quantities are derived in Appefidix 2. 

Appendix 2 Analysis of ineffective length 
and strain concentration 
factor 

In this section we derive expressions for ineffective 
length, 8h, and strain concentration factor, kh, in 
a hybrid composite associated with the fracture of 
an LE fibre. We use a simple model based on the 
one developed in [30]. 

Tile model used to develop expressions for kh, 
and 6h is shown in Fig. 6. We consider a broken 
LE fibre separated from two adjacent HE fibres by 
a matrix region of width d and thickness h with a 
shear modulus G. The HE fibres are flanked by a 
region of material in which, it is assumed, the 
strain is uniform and equal to the composite strain 
e. Between the HE fibres and this uniformly 
strained material is a matrix region of width d and 
thickness h. The Young's moduli of the LE and 
HE fibres are E1 and E2,  respectively, and their re- 
spective cross-sectional areas are A 1 and A 2 .  When 
the hybrid is made with alternating yarns, rather 
than single f'flaments, we use the total cross- 
setional areas of the filaments in the yarn to define 
A1 and A2. We assume that the fibres carry only 
axial stress, which is uniform across their cross- 
section. We neglect axial stress in the matrix and 
consider it to be a medium for transmission of 
shear stress alone. This is essentially a simplified 
shear lag model based on concepts proposed in 
[31 ]. For simplicity, we shall refer to the LE and 
HE fibres as fibres 1 and 2, respectively. 

Based on these assumptions, we can now develop 
the equations of equilibrium for fibres 1 and 2. 
Since we have a mixed boundary value problem we 



work with fibre axial displacements which are 
denoted by U 1 and U2, respectively. Our origin is 
in the cross-section of the fibre break. The model 
is symmetric about this plane. The axial displace- 
ment of the material in the region of uniform 
strain is U3 = e.x, where x is the axial distance 
from the plane of the origin. 

Based on the above assumptions, the equations 
of equilibrium for fibres 1 and 2 are, respectively, 

E , d2U1 2Gh 
1 A I ~  -- + -d-(u2 - u , )  = o 

d2U2 Gh Gh 
E A + v ( U 1  - - 2 U : )  - 2 2 dx 2 -- ----~eX. 

(A12) 

We require that as x -+ 0% the strains in the HE 
and LE fibre approach the composite strain e. 
That is, 

dU1 dU2 
lim = lim = e. (A13) 

x-+oo dx x . o o  dx 

At the origin, the stress in fibre 1 is zero, and by 
symmetry, the displacement in fibre 2 must be 
zero. Therefore, 

dU~(0) _ U2(0) = 0. (A14) 
dx 

It is convenient to express these equations in a 
non-dimensional form, as in [31]. To do this, we 
introduce dimensionless displacements u~, u2, and 
u3 and a dimensionless axial distance ~ which are 
related to their corresponding dimensioned vari- 
ables by 

[E2A2d] u2 
U1,2, 3 = [ y j  6"Ul, 2,3 

E2A2d] /2 
x = L - - & -  J 

(A15) 

Using Equation A15, we find that u3 = ~. 
We now introduce another dimensionless par- 

ameter, p, the ratio of fibre extensional stiffnesses, 
defined as 

E1A1 
P -- E2A2" (A16) 

We note that p can be greater, or less than unity. 
In general, we would expect it to be greater. 

d2Ul 
p d ~ - +  2(u2 - u ~ )  = 0 

d2uz 
d~ 2 2u2 + u l  = - ~  

and the boundary conditions reduce to 

lim du, _ lim du--A = 1 
~ - ~ d ~  ~ =  d~ 

du, (0) 
d~ 

- u2(0) = O. 

(A17) 

(A18) 

The solution to this set of equations is 

ul = ~ + (2--m21)Ce-m~--(2--m~)Ce -m2~ 

u2 = ~ + Ce -ml~ -Ce  -m~ (A19) 

where 

ml = tP + I + (p2 +1)1/2) 

m2 = (P + I--(P2 +1)1 /2 f /2p  

C = [ml(2 - -m~)  -- m2(2 - r n ~ ) ]  -1 

We observe that the equations of equilibrium 
and the boundary conditions for the problem con- 
sidered here, that of  a single broken LE fibre, are 
identical to those derived in [30] for the case of a 
notch in a unidirectional composite that cuts n 
fibres, except that here n is replaced by p. 

The strain concentration factor associated with 
a broken LE fibre is defined as the ratio of strain 
in the adjacent HE fibres, fibres 2, at the origin to 
the applied composite strain e. That is, 

1 dU2 (0) 
kh -- e dx (A20) 

In dimensionless form, this becomes 

du2(0) 
kh - d~ (A21) 

The resulting expression for hybrid strain concen- 
tration factor is 

kh = 1 - - ( m l - - m 2 ) C .  (A22) 

Since the governing equations are identical, this 
expression also given stress concentrations associ- 
ated with a notch cutting n fibres in a composite 

Using these dimensionless quantities, the that contains only one kind of fibre, which was 
equations of equilibrium, Equation A12, become derived in [30]. If  we let p = 1, the problem re- 
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duces to the case of  a singie broken fibre in a 
composite containing only one kind of  fibre. We 
denote this quantity by k, and the resulting value 
for the strain concentration factor obatined with 
Equation A22 is k = 1.293. As we discussed in the 
body of  the report, kh and k are also stress concen- 
tration factors, although in the case of  a hybrid 
composite we must be careful how we interpret 
"stress concentration". In the case o f  a composite 
containing only one type of  fibre, there is no con- 
fusion, and, in our simple model, strain concen- 
tration factor and stress concentration factor are 
identical. Therefore, we can compare the strain 
concentration factor obtained here for p = 1, 
which we found to be 1.293, with Hedgepeth's 
stress concentration factor for a single broken 
fibre which is 1.333 [31].  The difference is small, 
which lends support for the validity of  this simple 
model. 

We now turn our attention to ineffective length, 
6h. This quantity is a measure of  the axial dimen- 
sion over which the stress is perturbed in the 
vicinity o f  a broken LE fibre in the hybrid com- 
posite. We adopt the definition proposed by 
Friedman in [37].  Fig. 7 shows his concept sche- 
matically. We replace the stress distribution in the 
broken fibre by a step function that has the same 
average fibre stress. In our analysis, we can equiv- 
alently work with fibre strain. The requirement 
that average strains be equal implies that the areas 
between the strain distribution curves and the con- 
stant strain e be equal. That is, 

6h 
\ dx ] dx. (A23) 

dU I 

dx 

EQUIVALENT STEP FUNCTION 7 

8h 
2 

Figure 7 Definition of ineffective length (after Friedman 
[37]). 
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Using Equations A15 and A16, we can write this 
as 

8h p'=[ Gh J Jo 1-d~J 
The dimensionless displacement u is given in 
Equation A19. Performing the indicated inte- 
gration, we find 

[ E 1 A : d ]  1/~ 

where 

(A24) 

2(m~ - -m~)  
8h = p l /Z[ml (2_m~)  - - m 2 ( 2 - - m ~ ) ] "  

(A2S) 
The ineffective length for a composite reinforced 
with LE fibres only, 6, can be obtained from 
Equation A24 by setting p equal to unity. Per- 
forming this operation, we find 

8 =  1.531[E1Ald] in. (A26) 
[GhJ 
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